Marginalized Maximum a Posteriori Hyper-parameter Estimation for Global Optical Flow Techniques

نویسندگان

  • Kai Krajsek
  • Rudolf Mester
چکیده

Global optical flow estimation methods contain a regularization parameter (or prior and likelihood hyper-parameters if we consider the statistical point of view) which control the tradeoff between the different constraints on the optical flow field. Although experiments (see e.g. Ng et al. [Ng and Solo(1997)]) indicate the importance of the optimal choice of the hyper-parameters, only little attention has been focused on the optimal choice of these parameters in global motion estimation techniques in literature so far (the authors are only aware of one contribution [Ng and Solo(1997)] which attempts to estimate only the prior hyper-parameter whereas the likelihood hyper-parameter needs to be known). We adapt the marginalized maximum a posteriori (MMAP) estimator proposed in [Mohammad-Djafari(1995)] to simultaneously estimating hyper-parameters and optical flow for global motion estimation techniques. Experiments demonstrate the performance of this optimization technique and show that the choice of the regularization parameter/hyperparameters is an essential key-point in order to obtain precise motion estimates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian inference of models and hyper-parameters for robust optic-flow estimation

Selecting optimal models and hyper-parameters is crucial for accurate optic-flow estimation. This paper provides a solution to the problem in a generic Bayesian framework. The method is based on a conditional model linking the image intensity function, the unknown velocity field, hyper-parameters and the prior and likelihood motion models. Inference is performed on each of the three-level of th...

متن کامل

An Efficient Method for Model Reduction in Diffuse Optical Tomography

We present an efficient method for the reduction of model equations in the linearized diffuse optical tomography (DOT) problem. We first implement the maximum a posteriori (MAP) estimator and Tikhonov regularization, which are based on applying preconditioners to linear perturbation equations. For model reduction, the precondition is split into two parts: the principal components are consid...

متن کامل

Maximum a Posteriori Parameter

An iterative stochastic algorithm to perform maximum a posteriori parameter estimation of hidden Markov models is proposed. It makes the most of the statistical model by introducing an artiicial probability model based on an increasing number of the unobserved Markov chain at each iteration. Under minor regularity assumptions, we provide suucient conditions to ensure global convergence of this ...

متن کامل

Recovering the optical properties of a tissue using maximum a posteriori based estimation

The spectral reflectance of a biological tissue is known to be affected by its physical and optical properties such as thickness, chromophore concentrations and scattering coefficient. There exist numerous methods that aim to extract the optical parameters of a tissue by relating reflectance measurements to a theoretical model of light transport. During the parameter recovery process, assumptio...

متن کامل

Global Optimization for Motion Estimation with Applications to Ultrasound Videos of Carotid Artery Plaques

Motion estimation from digital video is an ill-posed problem that requires a regularization approach. Regularization introduces a smoothness constraint that can reduce the resolution of the velocity estimates. The problem is further complicated for ultrasound videos (US), where speckle noise levels can be significant. Motion estimation using optical flow models requires the modification of seve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006